Force-induced activation of talin and its possible role in focal adhesion mechanotransduction.

نویسندگان

  • Seung E Lee
  • Roger D Kamm
  • Mohammad R K Mofrad
چکیده

It is now well established that cells can sense mechanical force, but the mechanisms by which force is transduced into a biochemical signal remain poorly understood. One example is the recruitment of vinculin to reinforce initial contacts between a cell and the extracellular matrix (ECM) due to tensile force. Talin, an essential linking protein in an initial contact, contains at least one vinculin-binding site (VBS) that is cryptic and inactive in the native state. The N-terminal five-helix bundle of talin rod is a stable structure with a known cryptic VBS1. The perturbation of this stable structure through elevated temperature or destabilizing mutation activates vinculin binding. Although the disruption of this subdomain by transmitted mechanical force is a potential cue for the force-induced focal adhesion strengthening, the molecular basis for this mechanism remains elusive. Here, molecular dynamics (MD) is employed to demonstrate a force-induced conformational change that exposes the cryptic vinculin-binding residues of VBS1 to solvent under applied force along a realistic pulling direction. VBS1 undergoes a rotation of 62.0 +/- 9.5 degrees relative to its native state as its vinculin-binding residues are released from the tight hydrophobic core. Charged and polar residues on the VBS1 surface are the site of force transmission that strongly interact with an adjacent alpha-helix, and in effect, apply torque to the VBS1 to cause its rotation. Activation was observed with mean force of 13.2 +/-8.0 pN during constant velocity simulation and with steady force greater than 18.0 pN.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

All Subdomains of the Talin Rod Are Mechanically Vulnerable and May Contribute To Cellular Mechanosensing

Although the relevance of mechanotransduction in cell signaling is currently appreciated, the mechanisms that drive this process remain largely unknown. Mechanical unfolding of proteins may trigger distinct downstream signals in cells, providing a mechanism for cellular mechanotransduction. Force-induced unfolding of talin, a prominent focal adhesion protein, has been demonstrated previously fo...

متن کامل

Conformation, localization, and integrin binding of talin depend on its interaction with phosphoinositides.

Talin is a structural component of focal adhesion sites and is thought to be engaged in multiple protein interactions at the cytoplasmic face of cell/matrix contacts. Talin is a major link between integrin and the actin cytoskeleton and was shown to play an important role in focal adhesion assembly. Consistent with the view that talin must be activated at these sites, we found that phosphatidyl...

متن کامل

Force-induced focal adhesion translocation: effects of force amplitude and frequency.

Vascular endothelial cells rapidly transduce local mechanical forces into biological signals through numerous processes including the activation of focal adhesion sites. To examine the mechanosensing capabilities of these adhesion sites, focal adhesion translocation was monitored over the course of 5 min with GFP-paxillin while applying nN-level magnetic trap shear forces to the cell apex via i...

متن کامل

Force-Induced Calcium Concentration Change and Focal Adhesion Translocation: Effects of Force Amplitude and Frequency

Vascular endothelial cells rapidly sense and transduce external forces into biological signals through a process known as mechanotransduction. Numerous biological processes are involved in mechanotransduction, including calcium signaling and activation of focal adhesion sites, but little is known about how cells initially sense changes in the external mechanical environment. In order to examine...

متن کامل

Calcium ions and tyrosine phosphorylation interact coordinately with actin to regulate cytoprotective responses to stretching.

The actin-dependent sensory and response elements of stromal cells that are involved in mechanical signal transduction are poorly understood. To study mechanotransduction we have described previously a collagen-magnetic bead model in which application of well-defined forces to integrins induces an immediate (< 1 second) calcium influx. In this report we used the model to determine the role of c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomechanics

دوره 40 9  شماره 

صفحات  -

تاریخ انتشار 2007